A Unified Gender-Aware Age Estimation

13 Sep 2016  ·  Qing Tian, Songcan Chen, Xiaoyang Tan ·

Human age estimation has attracted increasing researches due to its wide applicability in such as security monitoring and advertisement recommendation. Although a variety of methods have been proposed, most of them focus only on the age-specific facial appearance. However, biological researches have shown that not only gender but also the aging difference between the male and the female inevitably affect the age estimation. To our knowledge, so far there have been two methods that have concerned the gender factor. The first is a sequential method which first classifies the gender and then performs age estimation respectively for classified male and female. Although it promotes age estimation performance because of its consideration on the gender semantic difference, an accumulation risk of estimation errors is unavoidable. To overcome drawbacks of the sequential strategy, the second is to regress the age appended with the gender by concatenating their labels as two dimensional output using Partial Least Squares (PLS). Although leading to promotion of age estimation performance, such a concatenation not only likely confuses the semantics between the gender and age, but also ignores the aging discrepancy between the male and the female. In order to overcome their shortcomings, in this paper we propose a unified framework to perform gender-aware age estimation. The proposed method considers and utilizes not only the semantic relationship between the gender and the age, but also the aging discrepancy between the male and the female. Finally, experimental results demonstrate not only the superiority of our method in performance, but also its good interpretability in revealing the aging discrepancy.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here