A Unified Neural Network Approach for Estimating Travel Time and Distance for a Taxi Trip

12 Oct 2017 Ishan Jindal Tony Qin Xue-wen Chen Matthew Nokleby Jieping Ye

In building intelligent transportation systems such as taxi or rideshare services, accurate prediction of travel time and distance is crucial for customer experience and resource management. Using the NYC taxi dataset, which contains taxi trips data collected from GPS-enabled taxis [23], this paper investigates the use of deep neural networks to jointly predict taxi trip time and distance... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet