A Unified Spatial-Angular Structured Light for Single-View Acquisition of Shape and Reflectance

We propose a unified structured light, consisting of an LED array and an LCD mask, for high-quality acquisition of both shape and reflectance from a single view. For geometry, one LED projects a set of learned mask patterns to accurately encode spatial information; the decoded results from multiple LEDs are then aggregated to produce a final depth map. For appearance, learned light patterns are cast through a transparent mask to efficiently probe angularly-varying reflectance. Per-point BRDF parameters are differentiably optimized with respect to corresponding measurements, and stored in texture maps as the final reflectance. We establish a differentiable pipeline for the joint capture to automatically optimize both the mask and light patterns towards optimal acquisition quality. The effectiveness of our light is demonstrated with a wide variety of physical objects. Our results compare favorably with state-of-the-art techniques.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here