A Unified View of Label Shift Estimation

Under label shift, the label distribution p(y) might change but the class-conditional distributions p(x|y) do not. There are two dominant approaches for estimating the label marginal. BBSE, a moment-matching approach based on confusion matrices, is provably consistent and provides interpretable error bounds. However, a maximum likelihood estimation approach, which we call MLLS, dominates empirically. In this paper, we present a unified view of the two methods and the first theoretical characterization of MLLS. Our contributions include (i) consistency conditions for MLLS, which include calibration of the classifier and a confusion matrix invertibility condition that BBSE also requires; (ii) a unified framework, casting BBSE as roughly equivalent to MLLS for a particular choice of calibration method; and (iii) a decomposition of MLLS's finite-sample error into terms reflecting miscalibration and estimation error. Our analysis attributes BBSE's statistical inefficiency to a loss of information due to coarse calibration. Experiments on synthetic data, MNIST, and CIFAR10 support our findings.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now



Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here