A Unifying Framework for Variance Reduction Algorithms for Finding Zeroes of Monotone Operators

22 Jun 2019  ·  Xun Zhang, William B. Haskell, Zhisheng Ye ·

It is common to encounter large-scale monotone inclusion problems where the objective has a finite sum structure. We develop a general framework for variance-reduced forward-backward splitting algorithms for this problem. This framework includes a number of existing deterministic and variance-reduced algorithms for function minimization as special cases, and it is also applicable to more general problems such as saddle-point problems and variational inequalities. With a carefully constructed Lyapunov function, we show that the algorithms covered by our framework enjoy a linear convergence rate in expectation under mild assumptions. We further consider Catalyst acceleration and asynchronous implementation to reduce the algorithmic complexity and computation time. We apply our proposed framework to a policy evaluation problem and a strongly monotone two-player game, both of which fall outside of function minimization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here