A unifying representer theorem for inverse problems and machine learning

2 Mar 2019  ·  Michael Unser ·

The standard approach for dealing with the ill-posedness of the training problem in machine learning and/or the reconstruction of a signal from a limited number of measurements is regularization. The method is applicable whenever the problem is formulated as an optimization task. The standard strategy consists in augmenting the original cost functional by an energy that penalizes solutions with undesirable behavior. The effect of regularization is very well understood when the penalty involves a Hilbertian norm. Another popular configuration is the use of an $\ell_1$-norm (or some variant thereof) that favors sparse solutions. In this paper, we propose a higher-level formulation of regularization within the context of Banach spaces. We present a general representer theorem that characterizes the solutions of a remarkably broad class of optimization problems. We then use our theorem to retrieve a number of known results in the literature---e.g., the celebrated representer theorem of machine leaning for RKHS, Tikhonov regularization, representer theorems for sparsity promoting functionals, the recovery of spikes---as well as a few new ones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here