A Wi-Fi Signal-Based Human Activity Recognition Using High-Dimensional Factor Models

10 Nov 2023  ·  Junshuo Liu, Fuhai Wang, Zhe Li, Rujing Xiong, Tiebin Mi, Robert Caiming Qiu ·

Passive sensing techniques based on Wi-Fi signals have emerged as a promising technology in advanced wireless communication systems due to their widespread application and cost-effectiveness. However, the proliferation of low-cost Internet of Things (IoT) devices has led to dense network deployments, resulting in increased levels of noise and interference in Wi-Fi environments. This, in turn, leads to noisy and redundant Channel State Information (CSI) data. As a consequence, the accuracy of human activity recognition based on Wi-Fi signals is compromised. To address this issue, we propose a novel CSI data signal extraction method. We established a human activity recognition system based on the Intel 5300 network interface cards (NICs) and collected a dataset containing six categories of human activities. Using our approach, signals extracted from the CSI data serve as inputs to machine learning (ML) classification algorithms to evaluate classification performance. In comparison to ML methods based on Principal Component Analysis (PCA), our proposed High-Dimensional Factor Model (HDFM) method improves recognition accuracy by 6.8%.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here