Abductive Knowledge Induction From Raw Data

7 Oct 2020  ·  Wang-Zhou Dai, Stephen H. Muggleton ·

For many reasoning-heavy tasks involving raw inputs, it is challenging to design an appropriate end-to-end learning pipeline. Neuro-Symbolic Learning, divide the process into sub-symbolic perception and symbolic reasoning, trying to utilise data-driven machine learning and knowledge-driven reasoning simultaneously. However, they suffer from the exponential computational complexity within the interface between these two components, where the sub-symbolic learning model lacks direct supervision, and the symbolic model lacks accurate input facts. Hence, most of them assume the existence of a strong symbolic knowledge base and only learn the perception model while avoiding a crucial problem: where does the knowledge come from? In this paper, we present Abductive Meta-Interpretive Learning ($Meta_{Abd}$) that unites abduction and induction to learn neural networks and induce logic theories jointly from raw data. Experimental results demonstrate that $Meta_{Abd}$ not only outperforms the compared systems in predictive accuracy and data efficiency but also induces logic programs that can be re-used as background knowledge in subsequent learning tasks. To the best of our knowledge, $Meta_{Abd}$ is the first system that can jointly learn neural networks from scratch and induce recursive first-order logic theories with predicate invention.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here