A Sparse Model-inspired Deep Thresholding Network for Exponential Signal Reconstruction -- Application in Fast Biological Spectroscopy

The non-uniform sampling is a powerful approach to enable fast acquisition but requires sophisticated reconstruction algorithms. Faithful reconstruction from partial sampled exponentials is highly expected in general signal processing and many applications. Deep learning has shown astonishing potential in this field but many existing problems, such as lack of robustness and explainability, greatly limit its applications. In this work, by combining merits of the sparse model-based optimization method and data-driven deep learning, we propose a deep learning architecture for spectra reconstruction from undersampled data, called MoDern. It follows the iterative reconstruction in solving a sparse model to build the neural network and we elaborately design a learnable soft-thresholding to adaptively eliminate the spectrum artifacts introduced by undersampling. Extensive results on both synthetic and biological data show that MoDern enables more robust, high-fidelity, and ultra-fast reconstruction than the state-of-the-art methods. Remarkably, MoDern has a small number of network parameters and is trained on solely synthetic data while generalizing well to biological data in various scenarios. Furthermore, we extend it to an open-access and easy-to-use cloud computing platform (XCloud-MoDern), contributing a promising strategy for further development of biological applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here