Accelerated Rates between Stochastic and Adversarial Online Convex Optimization

6 Mar 2023  ·  Sarah Sachs, Hedi Hadiji, Tim van Erven, Cristobal Guzman ·

Stochastic and adversarial data are two widely studied settings in online learning. But many optimization tasks are neither i.i.d. nor fully adversarial, which makes it of fundamental interest to get a better theoretical understanding of the world between these extremes. In this work we establish novel regret bounds for online convex optimization in a setting that interpolates between stochastic i.i.d. and fully adversarial losses. By exploiting smoothness of the expected losses, these bounds replace a dependence on the maximum gradient length by the variance of the gradients, which was previously known only for linear losses. In addition, they weaken the i.i.d. assumption by allowing, for example, adversarially poisoned rounds, which were previously considered in the related expert and bandit settings. In the fully i.i.d. case, our regret bounds match the rates one would expect from results in stochastic acceleration, and we also recover the optimal stochastically accelerated rates via online-to-batch conversion. In the fully adversarial case our bounds gracefully deteriorate to match the minimax regret. We further provide lower bounds showing that our regret upper bounds are tight for all intermediate regimes in terms of the stochastic variance and the adversarial variation of the loss gradients.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here