Accelerated Single-Call Methods for Constrained Min-Max Optimization

6 Oct 2022  ·  Yang Cai, Weiqiang Zheng ·

We study first-order methods for constrained min-max optimization. Existing methods either require two gradient calls or two projections in each iteration, which may be costly in some applications. In this paper, we first show that a variant of the Optimistic Gradient (OG) method, a single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ best-iterate convergence rate for inclusion problems with operators that satisfy the weak Minty variation inequality (MVI). Our second result is the first single-call single-projection algorithm -- the Accelerated Reflected Gradient (ARG) method that achieves the optimal $O(\frac{1}{T})$ last-iterate convergence rate for inclusion problems that satisfy negative comonotonicity. Both the weak MVI and negative comonotonicity are well-studied assumptions and capture a rich set of non-convex non-concave min-max optimization problems. Finally, we show that the Reflected Gradient (RG) method, another single-call single-projection algorithm, has $O(\frac{1}{\sqrt{T}})$ last-iterate convergence rate for constrained convex-concave min-max optimization, answering an open problem of [Heish et al, 2019]. Our convergence rates hold for standard measures such as the tangent residual and the natural residual.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here