Real-time high-resolution CO$_2$ geological storage prediction using nested Fourier neural operators

31 Oct 2022  ·  Gege Wen, Zongyi Li, Qirui Long, Kamyar Azizzadenesheli, Anima Anandkumar, Sally M. Benson ·

Carbon capture and storage (CCS) plays an essential role in global decarbonization. Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration. However, such modeling is very challenging at scale due to the high computational costs of existing numerical methods. This challenge leads to significant uncertainties in evaluating storage opportunities, which can delay the pace of large-scale CCS deployment. We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale. Nested FNO produces forecasts at different refinement levels using a hierarchy of FNOs and speeds up flow prediction nearly 700,000 times compared to existing methods. By learning the solution operator for the family of governing partial differential equations, Nested FNO creates a general-purpose numerical simulator alternative for CO2 storage with diverse reservoir conditions, geological heterogeneity, and injection schemes. Our framework enables unprecedented real-time modeling and probabilistic simulations that can support the scale-up of global CCS deployment.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here