The discovery of novel inhibitor molecules for emerging drug-target proteins is widely acknowledged as a challenging inverse design problem: Exhaustive exploration of the vast chemical search space is impractical, especially when the target structure or active molecules are unknown. Here we validate experimentally the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions -- that is unbiased toward any specific target. As demonstrators, we consider two dissimilar and relevant SARS-CoV-2 targets: the main protease and the spike protein (receptor binding domain, RBD). To perform target-aware design of novel inhibitor molecules, a protein sequence-conditioned sampling on the generative foundation model is performed. Despite using only the target sequence information, and without performing any target-specific adaptation of the generative model, micromolar-level inhibition was observed in in vitro experiments for two candidates out of only four synthesized for each target. The most potent spike RBD inhibitor also exhibited activity against several variants in live virus neutralization assays. These results therefore establish that a single, broadly deployable generative foundation model for accelerated hit discovery is effective and efficient, even in the most general case where neither target structure nor binder information is available.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here