Global Riemannian Acceleration in Hyperbolic and Spherical Spaces

7 Dec 2020  ·  David Martínez-Rubio ·

We further research on the accelerated optimization phenomenon on Riemannian manifolds by introducing accelerated global first-order methods for the optimization of $L$-smooth and geodesically convex (g-convex) or $\mu$-strongly g-convex functions defined on the hyperbolic space or a subset of the sphere. For a manifold other than the Euclidean space, these are the first methods to \emph{globally} achieve the same rates as accelerated gradient descent in the Euclidean space with respect to $L$ and $\epsilon$ (and $\mu$ if it applies), up to log factors. Due to the geometric deformations, our rates have an extra factor, depending on the initial distance $R$ to a minimizer and the curvature $K$, with respect to Euclidean accelerated algorithms As a proxy for our solution, we solve a constrained non-convex Euclidean problem, under a condition between convexity and \emph{quasar-convexity}, of independent interest. Additionally, for any Riemannian manifold of bounded sectional curvature, we provide reductions from optimization methods for smooth and g-convex functions to methods for smooth and strongly g-convex functions and vice versa. We also reduce global optimization to optimization over bounded balls where the effect of the curvature is reduced.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here