Accurate Frequency Estimation with Fewer DFT Interpolations based on Padé Approximation

28 May 2021  ·  Kai Wu, J. Andrew Zhang, Xiaojing Huang, Y. Jay Guo ·

Frequency estimation is a fundamental problem in many areas. The well-known A&M and its variant estimators have established an estimation framework by iteratively interpolating the discrete Fourier transform (DFT) coefficients. In general, those estimators require two DFT interpolations per iteration, have uneven initial estimation performance against frequencies, and are incompetent for small sample numbers due to low-order approximations involved. Exploiting the iterative estimation framework of A&M, we unprecedentedly introduce the Pad\'e approximation to frequency estimation, unveil some features about the updating function used for refining the estimation in each iteration, and develop a simple closed-form solution to solving the residual estimation error. Extensive simulation results are provided, validating the superiority of the new estimator over the state-the-art estimators in wide ranges of key parameters.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here