Action Modifiers: Learning from Adverbs in Instructional Videos

We present a method to learn a representation for adverbs from instructional videos using weak supervision from the accompanying narrations. Key to our method is the fact that the visual representation of the adverb is highly dependant on the action to which it applies, although the same adverb will modify multiple actions in a similar way. For instance, while 'spread quickly' and 'mix quickly' will look dissimilar, we can learn a common representation that allows us to recognize both, among other actions. We formulate this as an embedding problem, and use scaled dot-product attention to learn from weakly-supervised video narrations. We jointly learn adverbs as invertible transformations operating on the embedding space, so as to add or remove the effect of the adverb. As there is no prior work on weakly supervised learning from adverbs, we gather paired action-adverb annotations from a subset of the HowTo100M dataset for 6 adverbs: quickly/slowly, finely/coarsely, and partially/completely. Our method outperforms all baselines for video-to-adverb retrieval with a performance of 0.719 mAP. We also demonstrate our model's ability to attend to the relevant video parts in order to determine the adverb for a given action.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract


Introduced in the Paper:

HowTo100M Adverbs

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.