Active Simultaneously Transmitting and Reflecting Surface Assisted NOMA Networks

25 Jan 2024  ·  Xinwei Yue, Jin Xie, Chongjun Ouyang, Yuanwei Liu, Xia Shen, Zhiguo Ding ·

The novel active simultaneously transmitting and reflecting surface (ASTARS) has recently received a lot of attention due to its capability to conquer the multiplicative fading loss and achieve full-space smart radio environments. This paper introduces the ASTARS to assist non-orthogonal multiple access (NOMA) communications, where the stochastic geometry theory is used to model the spatial positions of pairing users. We design the independent reflection/transmission phase-shift controllers of ASTARS to align the phases of cascaded channels at pairing users. We derive new closed-form and asymptotic expressions of the outage probability and ergodic data rate for ASTARS-NOMA networks in the presence of perfect/imperfect successive interference cancellation (pSIC). The diversity orders and multiplexing gains for ASTARS-NOMA are derived to provide more insights. Furthermore, the system throughputs of ASTARS-NOMA are investigated in both delay-tolerant and delay-limited transmission modes. The numerical results are presented and show that: 1) ASTARS-NOMA with pSIC outperforms ASTARS assisted-orthogonal multiple access (ASTARS-OMA) in terms of outage probability and ergodic data rate; 2) The outage probability of ASTARS-NOMA can be further reduced within a certain range by increasing the power amplification factors; 3) The system throughputs of ASTARS-NOMA are superior to that of ASTARS-OMA in both delay-limited and delay-tolerant transmission modes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods