AD-NEGF: An End-to-End Differentiable Quantum Transport Simulator for Sensitivity Analysis and Inverse Problems

10 Feb 2022  ·  Yingzhanghao Zhou, Xiang Chen, Peng Zhang, Jun Wang, Lei Wang, Hong Guo ·

Since proposed in the 70s, the Non-Equilibrium Green Function (NEGF) method has been recognized as a standard approach to quantum transport simulations. Although it achieves superiority in simulation accuracy, the tremendous computational cost makes it unbearable for high-throughput simulation tasks such as sensitivity analysis, inverse design, etc. In this work, we propose AD-NEGF, to our best knowledge the first end-to-end differentiable NEGF model for quantum transport simulations. We implement the entire numerical process in PyTorch, and design customized backward pass with implicit layer techniques, which provides gradient information at an affordable cost while guaranteeing the correctness of the forward simulation. The proposed model is validated with applications in calculating differential physical quantities, empirical parameter fitting, and doping optimization, which demonstrates its capacity to accelerate the material design process by conducting gradient-based parameter optimization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here