AdaDNNs: Adaptive Ensemble of Deep Neural Networks for Scene Text Recognition

10 Oct 2017  ·  Chun Yang, Xu-Cheng Yin, Zejun Li, Jianwei Wu, Chunchao Guo, Hongfa Wang, Lei Xiao ·

Recognizing text in the wild is a really challenging task because of complex backgrounds, various illuminations and diverse distortions, even with deep neural networks (convolutional neural networks and recurrent neural networks). In the end-to-end training procedure for scene text recognition, the outputs of deep neural networks at different iterations are always demonstrated with diversity and complementarity for the target object (text). Here, a simple but effective deep learning method, an adaptive ensemble of deep neural networks (AdaDNNs), is proposed to simply select and adaptively combine classifier components at different iterations from the whole learning system. Furthermore, the ensemble is formulated as a Bayesian framework for classifier weighting and combination. A variety of experiments on several typical acknowledged benchmarks, i.e., ICDAR Robust Reading Competition (Challenge 1, 2 and 4) datasets, verify the surprised improvement from the baseline DNNs, and the effectiveness of AdaDNNs compared with the recent state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here