Adaptive Channel Estimation Based on Model-Driven Deep Learning for Wideband mmWave Systems

28 Apr 2021  ·  Weijie Jin, Hengtao He, Chao-Kai Wen, Shi Jin, Geoffrey Ye Li ·

Channel estimation in wideband millimeter-wave (mmWave) systems is very challenging due to the beam squint effect. To solve the problem, we propose a learnable iterative shrinkage thresholding algorithm-based channel estimator (LISTA-CE) based on deep learning. The proposed channel estimator can learn to transform the beam-frequency mmWave channel into the domain with sparse features through training data. The transform domain enables us to adopt a simple denoiser with few trainable parameters. We further enhance the adaptivity of the estimator by introducing hypernetwork to automatically generate learnable parameters for LISTA-CE online. Simulation results show that the proposed approach can significantly outperform the state-of-the-art deep learning-based algorithms with lower complexity and fewer parameters and adapt to new scenarios rapidly.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods