Adaptive Clustering Using Kernel Density Estimators

17 Aug 2017  ·  Ingo Steinwart, Bharath K. Sriperumbudur, Philipp Thomann ·

We derive and analyze a generic, recursive algorithm for estimating all splits in a finite cluster tree as well as the corresponding clusters. We further investigate statistical properties of this generic clustering algorithm when it receives level set estimates from a kernel density estimator. In particular, we derive finite sample guarantees, consistency, rates of convergence, and an adaptive data-driven strategy for choosing the kernel bandwidth. For these results we do not need continuity assumptions on the density such as H\"{o}lder continuity, but only require intuitive geometric assumptions of non-parametric nature.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here