Adaptive Distillation for Decentralized Learning from Heterogeneous Clients

18 Aug 2020Jiaxin MaRyo YonetaniZahid Iqbal

This paper addresses the problem of decentralized learning to achieve a high-performance global model by asking a group of clients to share local models pre-trained with their own data resources. We are particularly interested in a specific case where both the client model architectures and data distributions are diverse, which makes it nontrivial to adopt conventional approaches such as Federated Learning and network co-distillation... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet