Adaptive Least Mean Squares Graph Neural Networks and Online Graph Signal Estimation

27 Jan 2024  ·  Yi Yan, Changran Peng, Ercan Engin Kuruoglu ·

The online prediction of multivariate signals, existing simultaneously in space and time, from noisy partial observations is a fundamental task in numerous applications. We propose an efficient Neural Network architecture for the online estimation of time-varying graph signals named the Adaptive Least Mean Squares Graph Neural Networks (LMS-GNN). LMS-GNN aims to capture the time variation and bridge the cross-space-time interactions under the condition that signals are corrupted by noise and missing values. The LMS-GNN is a combination of adaptive graph filters and Graph Neural Networks (GNN). At each time step, the forward propagation of LMS-GNN is similar to adaptive graph filters where the output is based on the error between the observation and the prediction similar to GNN. The filter coefficients are updated via backpropagation as in GNN. Experimenting on real-world temperature data reveals that our LMS-GNN achieves more accurate online predictions compared to graph-based methods like adaptive graph filters and graph convolutional neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here