Adaptive Online Learning with Varying Norms

10 Feb 2020  ·  Ashok Cutkosky ·

Given any increasing sequence of norms $\|\cdot\|_0,\dots,\|\cdot\|_{T-1}$, we provide an online convex optimization algorithm that outputs points $w_t$ in some domain $W$ in response to convex losses $\ell_t:W\to \mathbb{R}$ that guarantees regret $R_T(u)=\sum_{t=1}^T \ell_t(w_t)-\ell_t(u)\le \tilde O\left(\|u\|_{T-1}\sqrt{\sum_{t=1}^T \|g_t\|_{t-1,\star}^2}\right)$ where $g_t$ is a subgradient of $\ell_t$ at $w_t$. Our method does not require tuning to the value of $u$ and allows for arbitrary convex $W$. We apply this result to obtain new "full-matrix"-style regret bounds. Along the way, we provide a new examination of the full-matrix AdaGrad algorithm, suggesting a better learning rate value that improves significantly upon prior analysis. We use our new techniques to tune AdaGrad on-the-fly, realizing our improved bound in a concrete algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods