Adaptive Sampling for Coarse Ranking

20 Feb 2018  ·  Sumeet Katariya, Lalit Jain, Nandana Sengupta, James Evans, Robert Nowak ·

We consider the problem of active coarse ranking, where the goal is to sort items according to their means into clusters of pre-specified sizes, by adaptively sampling from their reward distributions. This setting is useful in many social science applications involving human raters and the approximate rank of every item is desired. Approximate or coarse ranking can significantly reduce the number of ratings required in comparison to the number needed to find an exact ranking. We propose a computationally efficient PAC algorithm LUCBRank for coarse ranking, and derive an upper bound on its sample complexity. We also derive a nearly matching distribution-dependent lower bound. Experiments on synthetic as well as real-world data show that LUCBRank performs better than state-of-the-art baseline methods, even when these methods have the advantage of knowing the underlying parametric model.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here