Adaptive Serverless Learning

24 Aug 2020  ·  Hongchang Gao, Heng Huang ·

With the emergence of distributed data, training machine learning models in the serverless manner has attracted increasing attention in recent years. Numerous training approaches have been proposed in this regime, such as decentralized SGD. However, all existing decentralized algorithms only focus on standard SGD. It might not be suitable for some applications, such as deep factorization machine in which the feature is highly sparse and categorical so that the adaptive training algorithm is needed. In this paper, we propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically. To the best of our knowledge, this is the first adaptive decentralized training approach. Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers. Moreover, to reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach, which can also achieve linear speedup with respect to the number of workers. At last, extensive experiments on different tasks have confirmed the effectiveness of our proposed two approaches.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods