Adaptive-Solver Framework for Dynamic Strategy Selection in Large Language Model Reasoning

1 Oct 2023  ·  Jianpeng Zhou, Wanjun Zhong, Yanlin Wang, Jiahai Wang ·

Large Language Models (LLMs) are showcasing impressive ability in handling complex reasoning tasks. In real-world situations, problems often span a spectrum of complexities. Humans inherently adjust their problem-solving approaches based on task complexity. However, most methodologies that leverage LLMs tend to adopt a uniform approach: utilizing consistent models, prompting methods, and degrees of problem decomposition, regardless of the problem complexity. Inflexibility of them can bring unnecessary computational overhead or sub-optimal performance. To address this problem, we introduce an Adaptive-Solver framework. It strategically modulates solving strategies based on the difficulties of the problems. Given an initial solution, the framework functions with two primary modules. The initial evaluation module assesses the adequacy of the current solution. If improvements are needed, the subsequent adaptation module comes into play. Within this module, three key adaptation strategies are employed: (1) Model Adaptation: Switching to a stronger LLM when a weaker variant is inadequate. (2) Prompting Method Adaptation: Alternating between different prompting techniques to suit the problem's nuances. (3) Decomposition Granularity Adaptation: Breaking down a complex problem into more fine-grained sub-questions to enhance solvability. Through such dynamic adaptations, our framework not only enhances computational efficiency but also elevates the overall performance. This dual-benefit ensures both the efficiency of the system for simpler tasks and the precision required for more complex questions. Experimental results from complex reasoning tasks reveal that the prompting method adaptation and decomposition granularity adaptation enhance performance across all tasks. Furthermore, the model adaptation approach significantly reduces API costs (up to 50%) while maintaining superior performance.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here