Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time

23 May 2018  ·  Hejian Sang, Jia Liu ·

In this paper, we propose a new adaptive stochastic gradient Langevin dynamics (ASGLD) algorithmic framework and its two specialized versions, namely adaptive stochastic gradient (ASG) and adaptive gradient Langevin dynamics(AGLD), for non-convex optimization problems. All proposed algorithms can escape from saddle points with at most $O(\log d)$ iterations, which is nearly dimension-free. Further, we show that ASGLD and ASG converge to a local minimum with at most $O(\log d/\epsilon^4)$ iterations. Also, ASGLD with full gradients or ASGLD with a slowly linearly increasing batch size converge to a local minimum with iterations bounded by $O(\log d/\epsilon^2)$, which outperforms existing first-order methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here