Paper

Adaptive Subgradient Methods for Online AUC Maximization

Learning for maximizing AUC performance is an important research problem in Machine Learning and Artificial Intelligence. Unlike traditional batch learning methods for maximizing AUC which often suffer from poor scalability, recent years have witnessed some emerging studies that attempt to maximize AUC by single-pass online learning approaches. Despite their encouraging results reported, the existing online AUC maximization algorithms often adopt simple online gradient descent approaches that fail to exploit the geometrical knowledge of the data observed during the online learning process, and thus could suffer from relatively larger regret. To address the above limitation, in this work, we explore a novel algorithm of Adaptive Online AUC Maximization (AdaOAM) which employs an adaptive gradient method that exploits the knowledge of historical gradients to perform more informative online learning. The new adaptive updating strategy of the AdaOAM is less sensitive to the parameter settings and maintains the same time complexity as previous non-adaptive counterparts. Additionally, we extend the algorithm to handle high-dimensional sparse data (SAdaOAM) and address sparsity in the solution by performing lazy gradient updating. We analyze the theoretical bounds and evaluate their empirical performance on various types of data sets. The encouraging empirical results obtained clearly highlighted the effectiveness and efficiency of the proposed algorithms.

Results in Papers With Code
(↓ scroll down to see all results)