Adjoint Sensitivities of Chaotic Flows without Adjoint Solvers: A Data-Driven Approach

18 Apr 2024  ·  Defne E. Ozan, Luca Magri ·

In one calculation, adjoint sensitivity analysis provides the gradient of a quantity of interest with respect to all system's parameters. Conventionally, adjoint solvers need to be implemented by differentiating computational models, which can be a cumbersome task and is code-specific. To propose an adjoint solver that is not code-specific, we develop a data-driven strategy. We demonstrate its application on the computation of gradients of long-time averages of chaotic flows. First, we deploy a parameter-aware echo state network (ESN) to accurately forecast and simulate the dynamics of a dynamical system for a range of system's parameters. Second, we derive the adjoint of the parameter-aware ESN. Finally, we combine the parameter-aware ESN with its adjoint version to compute the sensitivities to the system parameters. We showcase the method on a prototypical chaotic system. Because adjoint sensitivities in chaotic regimes diverge for long integration times, we analyse the application of ensemble adjoint method to the ESN. We find that the adjoint sensitivities obtained from the ESN match closely with the original system. This work opens possibilities for sensitivity analysis without code-specific adjoint solvers.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here