Adjusted Wasserstein Distributionally Robust Estimator in Statistical Learning

27 Mar 2023  ·  Yiling Xie, Xiaoming Huo ·

We propose an adjusted Wasserstein distributionally robust estimator -- based on a nonlinear transformation of the Wasserstein distributionally robust (WDRO) estimator in statistical learning. The classic WDRO estimator is asymptotically biased, while our adjusted WDRO estimator is asymptotically unbiased, resulting in a smaller asymptotic mean squared error. Meanwhile, the proposed adjusted WDRO has an out-of-sample performance guarantee. Further, under certain conditions, our proposed adjustment technique provides a general principle to de-bias asymptotically biased estimators. Specifically, we will investigate how the adjusted WDRO estimator is developed in the generalized linear model, including logistic regression, linear regression, and Poisson regression. Numerical experiments demonstrate the favorable practical performance of the adjusted estimator over the classic one.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here