Beyond Gradient Descent for Regularized Segmentation Losses

The simplicity of gradient descent (GD) made it the default method for training ever-deeper and complex neural networks. Both loss functions and architectures are often explicitly tuned to be amenable to this basic local optimization. In the context of weakly-supervised CNN segmentation, we demonstrate a well-motivated loss function where an alternative optimizer (ADM) achieves the state-of-the-art while GD performs poorly. Interestingly, GD obtains its best result for a "smoother" tuning of the loss function. The results are consistent across different network architectures. Our loss is motivated by well-understood MRF/CRF regularization models in "shallow" segmentation and their known global solvers. Our work suggests that network design/training should pay more attention to optimization methods.

PDF Abstract CVPR 2019 PDF CVPR 2019 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here