Advances in Deep Space Exploration via Simulators & Deep Learning

10 Feb 2020  ·  James Bird, Linda Petzold, Philip Lubin, Julia Deacon ·

The StarLight program conceptualizes fast interstellar travel via small wafer satellites (wafersats) that are propelled by directed energy. This process is wildly different from traditional space travel and trades large and slow spacecraft for small, fast, inexpensive, and fragile ones. The main goal of these wafer satellites is to gather useful images during their deep space journey. We introduce and solve some of the main problems that accompany this concept. First, we need an object detection system that can detect planets that we have never seen before, some containing features that we may not even know exist in the universe. Second, once we have images of exoplanets, we need a way to take these images and rank them by importance. Equipment fails and data rates are slow, thus we need a method to ensure that the most important images to humankind are the ones that are prioritized for data transfer. Finally, the energy on board is minimal and must be conserved and used sparingly. No exoplanet images should be missed, but using energy erroneously would be detrimental. We introduce simulator-based methods that leverage artificial intelligence, mostly in the form of computer vision, in order to solve all three of these issues. Our results confirm that simulators provide an extremely rich training environment that surpasses that of real images, and can be used to train models on features that have yet to be observed by humans. We also show that the immersive and adaptable environment provided by the simulator, combined with deep learning, lets us navigate and save energy in an otherwise implausible way.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here