Advancing Building Energy Modeling with Large Language Models: Exploration and Case Studies

14 Feb 2024  ·  Liang Zhang, Zhelun Chen, Vitaly Ford ·

The rapid progression in artificial intelligence has facilitated the emergence of large language models like ChatGPT, offering potential applications extending into specialized engineering modeling, especially physics-based building energy modeling. This paper investigates the innovative integration of large language models with building energy modeling software, focusing specifically on the fusion of ChatGPT with EnergyPlus. A literature review is first conducted to reveal a growing trend of incorporating of large language models in engineering modeling, albeit limited research on their application in building energy modeling. We underscore the potential of large language models in addressing building energy modeling challenges and outline potential applications including 1) simulation input generation, 2) simulation output analysis and visualization, 3) conducting error analysis, 4) co-simulation, 5) simulation knowledge extraction and training, and 6) simulation optimization. Three case studies reveal the transformative potential of large language models in automating and optimizing building energy modeling tasks, underscoring the pivotal role of artificial intelligence in advancing sustainable building practices and energy efficiency. The case studies demonstrate that selecting the right large language model techniques is essential to enhance performance and reduce engineering efforts. Besides direct use of large language models, three specific techniques were utilized: 1) prompt engineering, 2) retrieval-augmented generation, and 3) multi-agent large language models. The findings advocate a multidisciplinary approach in future artificial intelligence research, with implications extending beyond building energy modeling to other specialized engineering modeling.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here