Advancing EEG/MEG Source Imaging with Geometric-Informed Basis Functions

31 Jan 2024  ·  Song Wang, Chen Wei, Kexin Lou, Dongfeng Gu, Quanying Liu ·

Electroencephalography (EEG) and Magnetoencephalography (MEG) are pivotal in understanding brain activity but are limited by their poor spatial resolution. EEG/MEG source imaging (ESI) infers the high-resolution electric field distribution in the brain based on the low-resolution scalp EEG/MEG observations. However, the ESI problem is ill-posed, and how to bring neuroscience priors into ESI method is the key. Here, we present a novel method which utilizes the Brain Geometric-informed Basis Functions (GBFs) as priors to enhance EEG/MEG source imaging. Through comprehensive experiments on both synthetic data and real task EEG data, we demonstrate the superiority of GBFs over traditional spatial basis functions (e.g., Harmonic and MSP), as well as existing ESI methods (e.g., dSPM, MNE, sLORETA, eLORETA). GBFs provide robust ESI results under different noise levels, and result in biologically interpretable EEG sources. We believe the high-resolution EEG source imaging from GBFs will greatly advance neuroscience research.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here