Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification

ACL 2017 Lianhui QinZhisong ZhangHai ZhaoZhiting HuEric P. Xing

Implicit discourse relation classification is of great challenge due to the lack of connectives as strong linguistic cues, which motivates the use of annotated implicit connectives to improve the recognition. We propose a feature imitation framework in which an implicit relation network is driven to learn from another neural network with access to connectives, and thus encouraged to extract similarly salient features for accurate classification... (read more)

PDF Abstract ACL 2017 PDF ACL 2017 Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet