Adversarially Robust Multi-Armed Bandit Algorithm with Variance-Dependent Regret Bounds

14 Jun 2022  ·  Shinji Ito, Taira Tsuchiya, Junya Honda ·

This paper considers the multi-armed bandit (MAB) problem and provides a new best-of-both-worlds (BOBW) algorithm that works nearly optimally in both stochastic and adversarial settings. In stochastic settings, some existing BOBW algorithms achieve tight gap-dependent regret bounds of $O(\sum_{i: \Delta_i>0} \frac{\log T}{\Delta_i})$ for suboptimality gap $\Delta_i$ of arm $i$ and time horizon $T$. As Audibert et al. [2007] have shown, however, that the performance can be improved in stochastic environments with low-variance arms. In fact, they have provided a stochastic MAB algorithm with gap-variance-dependent regret bounds of $O(\sum_{i: \Delta_i>0} (\frac{\sigma_i^2}{\Delta_i} + 1) \log T )$ for loss variance $\sigma_i^2$ of arm $i$. In this paper, we propose the first BOBW algorithm with gap-variance-dependent bounds, showing that the variance information can be used even in the possibly adversarial environment. Further, the leading constant factor in our gap-variance dependent bound is only (almost) twice the value for the lower bound. Additionally, the proposed algorithm enjoys multiple data-dependent regret bounds in adversarial settings and works well in stochastic settings with adversarial corruptions. The proposed algorithm is based on the follow-the-regularized-leader method and employs adaptive learning rates that depend on the empirical prediction error of the loss, which leads to gap-variance-dependent regret bounds reflecting the variance of the arms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here