Agent4Ranking: Semantic Robust Ranking via Personalized Query Rewriting Using Multi-agent LLM

24 Dec 2023  ·  Xiaopeng Li, Lixin Su, Pengyue Jia, Xiangyu Zhao, Suqi Cheng, Junfeng Wang, Dawei Yin ·

Search engines are crucial as they provide an efficient and easy way to access vast amounts of information on the internet for diverse information needs. User queries, even with a specific need, can differ significantly. Prior research has explored the resilience of ranking models against typical query variations like paraphrasing, misspellings, and order changes. Yet, these works overlook how diverse demographics uniquely formulate identical queries. For instance, older individuals tend to construct queries more naturally and in varied order compared to other groups. This demographic diversity necessitates enhancing the adaptability of ranking models to diverse query formulations. To this end, in this paper, we propose a framework that integrates a novel rewriting pipeline that rewrites queries from various demographic perspectives and a novel framework to enhance ranking robustness. To be specific, we use Chain of Thought (CoT) technology to utilize Large Language Models (LLMs) as agents to emulate various demographic profiles, then use them for efficient query rewriting, and we innovate a robust Multi-gate Mixture of Experts (MMoE) architecture coupled with a hybrid loss function, collectively strengthening the ranking models' robustness. Our extensive experimentation on both public and industrial datasets assesses the efficacy of our query rewriting approach and the enhanced accuracy and robustness of the ranking model. The findings highlight the sophistication and effectiveness of our proposed model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here