Aggregation using input-output trade-off

8 Mar 2018 Aurélie Fischer Mathilde Mougeot

In this paper, we introduce a new learning strategy based on a seminal idea of Mojirsheibani (1999, 2000, 2002a, 2002b), who proposed a smart method for combining several classifiers, relying on a consensus notion. In many aggregation methods, the prediction for a new observation x is computed by building a linear or convex combination over a collection of basic estimators r1(x),... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet