Agnostic Learning of Halfspaces with Gradient Descent via Soft Margins

1 Oct 2020  ·  Spencer Frei, Yuan Cao, Quanquan Gu ·

We analyze the properties of gradient descent on convex surrogates for the zero-one loss for the agnostic learning of linear halfspaces. If $\mathsf{OPT}$ is the best classification error achieved by a halfspace, by appealing to the notion of soft margins we are able to show that gradient descent finds halfspaces with classification error $\tilde O(\mathsf{OPT}^{1/2}) + \varepsilon$ in $\mathrm{poly}(d,1/\varepsilon)$ time and sample complexity for a broad class of distributions that includes log-concave isotropic distributions as a subclass. Along the way we answer a question recently posed by Ji et al. (2020) on how the tail behavior of a loss function can affect sample complexity and runtime guarantees for gradient descent.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here