airpred: A Flexible R Package Implementing Methods for Predicting Air Pollution

Fine particulate matter (PM$_{2.5}$) is one of the criteria air pollutants regulated by the Environmental Protection Agency in the United States. There is strong evidence that ambient exposure to (PM$_{2.5}$) increases risk of mortality and hospitalization. Large scale epidemiological studies on the health effects of PM$_{2.5}$ provide the necessary evidence base for lowering the safety standards and inform regulatory policy. However, ambient monitors of PM$_{2.5}$ (as well as monitors for other pollutants) are sparsely located across the U.S., and therefore studies based only on the levels of PM$_{2.5}$ measured from the monitors would inevitably exclude large amounts of the population. One approach to resolving this issue has been developing models to predict local PM$_{2.5}$, NO$_2$, and ozone based on satellite, meteorological, and land use data. This process typically relies developing a prediction model that relies on large amounts of input data and is highly computationally intensive to predict levels of air pollution in unmonitored areas. We have developed a flexible R package that allows for environmental health researchers to design and train spatio-temporal models capable of predicting multiple pollutants, including PM$_{2.5}$. We utilize H2O, an open source big data platform, to achieve both performance and scalability when used in conjunction with cloud or cluster computing systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here