Algorithmic learning of probability distributions from random data in the limit

31 Oct 2017  ·  George Barmpalias, Frank Stephan ·

We study the problem of identifying a probability distribution for some given randomly sampled data in the limit, in the context of algorithmic learning theory as proposed recently by Vinanyi and Chater. We show that there exists a computable partial learner for the computable probability measures, while by Bienvenu, Monin and Shen it is known that there is no computable learner for the computable probability measures. Our main result is the characterization of the oracles that compute explanatory learners for the computable (continuous) probability measures as the high oracles. This provides an analogue of a well-known result of Adleman and Blum in the context of learning computable probability distributions. We also discuss related learning notions such as behaviorally correct learning and orther variations of explanatory learning, in the context of learning probability distributions from data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here