Algorithmic stability and hypothesis complexity

We introduce a notion of algorithmic stability of learning algorithms---that we term \emph{argument stability}---that captures stability of the hypothesis output by the learning algorithm in the normed space of functions from which hypotheses are selected. The main result of the paper bounds the generalization error of any learning algorithm in terms of its argument stability. The bounds are based on martingale inequalities in the Banach space to which the hypotheses belong. We apply the general bounds to bound the performance of some learning algorithms based on empirical risk minimization and stochastic gradient descent.

PDF Abstract ICML 2017 PDF ICML 2017 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here