Allocation Problems in Ride-Sharing Platforms: Online Matching with Offline Reusable Resources

22 Nov 2017  ·  John P. Dickerson, Karthik A. Sankararaman, Aravind Srinivasan, Pan Xu ·

Bipartite matching markets pair agents on one side of a market with agents, items, or contracts on the opposing side. Prior work addresses online bipartite matching markets, where agents arrive over time and are dynamically matched to a known set of disposable resources. In this paper, we propose a new model, Online Matching with (offline) Reusable Resources under Known Adversarial Distributions (OM-RR-KAD), in which resources on the offline side are reusable instead of disposable; that is, once matched, resources become available again at some point in the future. We show that our model is tractable by presenting an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2 - eps for any given eps greater than 0. We also show that no non-adaptive algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP. Through a data-driven analysis on a massive openly-available dataset, we show our model is robust enough to capture the application of taxi dispatching services and ride-sharing systems. We also present heuristics that perform well in practice.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here