An Adaptive Structural Learning of Deep Belief Network for Image-based Crack Detection in Concrete Structures Using SDNET2018

25 Oct 2021  ·  Shin Kamada, Takumi Ichimura, Takashi Iwasaki ·

We have developed an adaptive structural Deep Belief Network (Adaptive DBN) that finds an optimal network structure in a self-organizing manner during learning. The Adaptive DBN is the hierarchical architecture where each layer employs Adaptive Restricted Boltzmann Machine (Adaptive RBM). The Adaptive RBM can find the appropriate number of hidden neurons during learning. The proposed method was applied to a concrete image benchmark data set SDNET2018 for crack detection. The dataset contains about 56,000 crack images for three types of concrete structures: bridge decks, walls, and paved roads. The fine-tuning method of the Adaptive DBN can show 99.7%, 99.7%, and 99.4% classification accuracy for three types of structures. However, we found the database included some wrong annotated data which cannot be judged from images by human experts. This paper discusses consideration that purses the major factor for the wrong cases and the removal of the adversarial examples from the dataset.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods