In this paper, we explore theoretical properties of training a twolayered ReLU network $g(\mathbf{x}; \mathbf{w}) = \sum_{j=1}^K \sigma(\mathbf{w}_j^T\mathbf{x})$ with centered $d$dimensional spherical Gaussian input $\mathbf{x}$ ($\sigma$=ReLU). We train our network with gradient descent on $\mathbf{w}$ to mimic the output of a teacher network with the same architecture and fixed parameters $\mathbf{w}^*$... (read more)
PDFMETHOD  TYPE  

ReLU

Activation Functions 