An Attention Model for group-level emotion recognition

9 Jul 2018  ·  Aarush Gupta, Dakshit Agrawal, Hardik Chauhan, Jose Dolz, Marco Pedersoli ·

In this paper we propose a new approach for classifying the global emotion of images containing groups of people. To achieve this task, we consider two different and complementary sources of information: i) a global representation of the entire image (ii) a local representation where only faces are considered. While the global representation of the image is learned with a convolutional neural network (CNN), the local representation is obtained by merging face features through an attention mechanism. The two representations are first learned independently with two separate CNN branches and then fused through concatenation in order to obtain the final group-emotion classifier. For our submission to the EmotiW 2018 group-level emotion recognition challenge, we combine several variations of the proposed model into an ensemble, obtaining a final accuracy of 64.83% on the test set and ranking 4th among all challenge participants.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here