An Autonomous Intrusion Detection System Using an Ensemble of Advanced Learners

31 Jan 2020  ·  Amir Andalib, Vahid Tabataba Vakili ·

An intrusion detection system (IDS) is a vital security component of modern computer networks. With the increasing amount of sensitive services that use computer network-based infrastructures, IDSs need to be more intelligent and autonomous. Aside from autonomy, another important feature for an IDS is its ability to detect zero-day attacks. To address these issues, in this paper, we propose an IDS which reduces the amount of manual interaction and needed expert knowledge and is able to yield acceptable performance under zero-day attacks. Our approach is to use three learning techniques in parallel: gated recurrent unit (GRU), convolutional neural network as deep techniques and random forest as an ensemble technique. These systems are trained in parallel and the results are combined under two logics: majority vote and "OR" logic. We use the NSL-KDD dataset to verify the proficiency of our proposed system. Simulation results show that the system has the potential to operate with a very low technician interaction under the zero-day attacks. We achieved 87:28% accuracy on the NSL-KDD's "KDDTest+" dataset and 76:61% accuracy on the challenging "KDDTest-21" with lower training time and lower needed computational resources.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here