An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

3 Jul 2013Ji Won Yoon

In order to cluster or partition data, we often use Expectation-and-Maximization (EM) or Variational approximation with a Gaussian Mixture Model (GMM), which is a parametric probability density function represented as a weighted sum of $\hat{K}$ Gaussian component densities. However, model selection to find underlying $\hat{K}$ is one of the key concerns in GMM clustering, since we can obtain the desired clusters only when $\hat{K}$ is known... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet