Efficient Optimization Methods for Extreme Similarity Learning with Nonlinear Embeddings

26 Oct 2020  ·  Bowen Yuan, Yu-Sheng Li, Pengrui Quan, Chih-Jen Lin ·

We study the problem of learning similarity by using nonlinear embedding models (e.g., neural networks) from all possible pairs. This problem is well-known for its difficulty of training with the extreme number of pairs. For the special case of using linear embeddings, many studies have addressed this issue of handling all pairs by considering certain loss functions and developing efficient optimization algorithms. This paper aims to extend results for general nonlinear embeddings. First, we finish detailed derivations and provide clean formulations for efficiently calculating some building blocks of optimization algorithms such as function, gradient evaluation, and Hessian-vector product. The result enables the use of many optimization methods for extreme similarity learning with nonlinear embeddings. Second, we study some optimization methods in detail. Due to the use of nonlinear embeddings, implementation issues different from linear cases are addressed. In the end, some methods are shown to be highly efficient for extreme similarity learning with nonlinear embeddings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here